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The kinetic equation for plasma with arbitrary strong 
interaction in a weak electric field 

V B Bobrov and S A Trigger 
Institute for High Temperatures, USSR Academy of Sciences, 13/19 Izhorskaya Street, 
Moscow 127412, USSR 

Received 17 October 1990 

Abstract. The exact linearized kinetic equation for plasma in a weak electric field of 
arbitrary frequency is obtained. All effects of interaction are included in the collision 
integral with the help of an equilibrium correlation function. The perturbation theory is 
considered for this function and a generalized solution for low-frequency and high- 
frequency collisions is obtained. 

1. Introduction 

At present there is a great variety of experimental information on the static and 
high-frequency conductivity of gaseous and metallic plasmas and of some other plasma 
systems (Noskov 1983, Eheling 1983, Fortov and Iakuhov 1984, Kovalenko er al 1990). 
However, the available theoretical results cover, mainly, two frequency ranges: o + O  
and w >> F, where w is the external electric field frequency and G is the average collision 
frequency. Thus, the necessity arises to describe the conductivity in the frequency 
range w - G. In this case one should take into account the frequency dependence of 
conductivity connected with the parameters hwlk ,T,  Rw/& w / o p ,  etc, where T i s  the 
temperature of the system, E is the characteristic energy of particles and wp is the 
plasma frequency. The problem of describing the conductivity of the charged-particle 
systems (Coulomb systems, CSS) at arbitrary frequencies w of the external field becomes 
especially important in connection with intense study of the laser radiation effects on 
metals, non-ideal plasma and other plasma systems. 

In the theoretical study of conductivity, two methods are mainly used: the kinetic 
equation (KE)  method (Kadanoff and Baym 1962, Silin 1971, Klimontovich 1975) and 
the theory of linear response (TLR) (Zubarev 1971, Akhiezer and Peletminsky 1977). 
The difference between the above two methods is caused, in particular, by the different 
order of applying perturbation theory with respect to interparticle interaction and with 
respect to the applied electric field. .In the KE method, first the splitting of a non- 
equilibrium high-order correlation function to lower order is done, using perturbation 
theory with respect to interparticle interaction (or to the density of scatterers), and 
then the obtained closed K E  for the single-particle distribution function is linearized 
with respect to the electric field. In the TLR, firstly, linearization with respect to the 
external field is carried out, making it possible to express the conductivity through 
equiiibrium correiation functions which siriciiy iake into accouni both the interparticie 
interaction and the spatial and frequency dispersion. Then, based on diagram methods 
of perturbation theory, approximate expressions are derived. It is clear that in a 
consistent theory the order of the procedures used should not affect the final results. 
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To describe the cs in a weak electric field it is natural to prefer the TLR since, being 
based on diagram methods of calculation of temperature Green functions (Abrikosov 
et nl 19621, the important possibilities arise of including the effects of cs non-ideality 
and comparatively strict evaluation of the approximations used. In parallel with this, 
it is possible to verify by means of the TLR the validity of expressions derived in the 
KE method, which is of great importance. This is connected with the fact that traditional 
schemes of deducing the K E  are based on the hypothesis that high-order non-equilibrium 
correlation functions in the case of a weak interaction can be uncoupled into low-order 
ones, a realization that cannot be argued exactly (Silin 1971, Klimontovich 1975). An 
intuitive element is conserved when the KE is deduced in a more consistent method 
due to Kadanoff and Baym (1962). 

However, certain hopes connected with the TLR have not yet been completely 
realized due to considerable difficulties in solution of the diagram equations obtained, 
because of their complexity. It could even be said that at present only the simplest 
model of electrons in a field of immovable weak scatterers has been considered in the 
TLR while a consistent approach to calculation of the weakly non-ideal plasma conduc- 
tivity is absent. 

It should be noted that during recent years some attempts were made to write the 
general linearized KE for the cs on the basis of the memory function theory (Forster 
1975). Using this approach it may be possible to compose a consistent perturbation 
theory for ihe consideraiion of cs kineiics in an externai fieid. However, ihe exact 
expression for the generalized collision integral in the linearized KE has not yet been 
derived. 

Here, the exact linearized KE for the cs in an external electric field, holding true 
for arbitrary strong interaction between particles and for arbitrary frequencies of the 
external field, is deduced. Some consequences of applying the perturbation theory for 
the solution of this KE are considered and briefly discussed. There is an agreement 
with the KE method results for a weakly non-ideal plasma in the range of low and 
high frequencies of the field. 

2. Single-particle distribution function for a cs in a weak electric field 

Let us consider an electrically neutral cs, 

1 z,,en. = 0 

in a weak electric field set by the scalar potential Liex'(r, 1 ) .  In equation (1) no is the 
average density of particles of type a with charge z.e and mass ma. The Wigner 
distribution function L(r ,  R, t )  of these particles can be represented by 

L ( r . 4  t)=Sp(&t)+:(r,, t)+z..(r2, 1 ) )  
(2) 

r =  r,- rI  R=f ( r ,+ r , )  

where @:(r, t)  and @.,(r, f )  are the creation and annihilation field operators of the 
y.i,rruc;a L11 LLlC rlG,LG,,"G,g rcyrsJc lrr 'Wrvrr ,  .......:..-" :.. .L̂  u-:..n..Lm-" _^__ ~-n..*...:.-.. 

(3) 
* 
F(t) = exp(ii i t /f i)F(t)  exp(-iiit/fi). 

p( f )  is the non-equilibrium statistical cs operator in an external electric field satisfying 
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the motion equation 

with the initial condition 

i+m) = &. 
l?, is the statistical Gibbs operator formed on the exact Hamiitonian f i  of the cs in 
the absence of an external field and characterized by temperature T, chemical potentials 
pa and volume V, 

( 5 )  ^a ^ b  1 I?=-LL e;%+--L u.b(4)(n,n-,-fia.Sa,b) 
' P  2v 'I 

P t ( t )  is the Hamiltonian of interaction between the cs and an external electric field, 

U'''(, o) is the Fourier component of the scalar potential, 
n^'l =n^+ 1 
,.m -p--cl;il$*qii G n^+n^ 

- P  7 
(7) 

6: and are the creation and annihilation operators of particles of type a with 
momentum hp (here and below the spin indices are omitted), uab(q) is the Fourier 
component of the Coulomb interaction potential 

Using the TLR (Zubarev 1971, Akhiezer and Peletminsky 1977), it is easy to derive the 
correction to the equilibrium single-particle distribution function f b"(r) of the uniform 
and isotropic cs which is proportional to an external electric field (Bobrov et al 1989, 
Bobrov and Trigger 1990): 

It is evident that 
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Thus, to determine the linearized distribution function f,'(p, k. w )  it is sufficient 
to calculate the retarded Green function q5."(p, k, w ) .  However, the retarded Green 
functions are the analytical continuation of the respective temperature Green functions 
from discrete points to the upper half-plane of complex w (Abrikosov er a/ 1962). To 
calculate the temperature Green functions there exist well-developed diagram methods 
of perturbation theory with respect to interparticle interaction (Abrikosov et a/ 1962, 
Kadanoff and Baym 1962, Kraeft el al 1986). In particular, for the temperature Green 
function (figure 1 )  

l /ksT 

d7 exp(in,T)( ?7(iik(-ihT)i-kO)) ( ( n * ~ k l p ' - k ) ) i O .  (15) 

where ?, is the operator of 7-ordering and Cl, = 2wk,Tn ( n  = 0, +1 . . .) one can write 
the diagram expansion (figure 2) and identify the component (figure 3) 

I -3Ik.T 
+T(p, k, in.) = - t  

~ Z ( P ,  k, in,)  =((fCWk))%~ (16) 

which is irreducible in the 'k-channel' along a single line of the Coulomb interaction: 

47r 
u(k)=- 

k2 

k,iQ, 
@,'(p,k,iR,l= -d, ~ 5 5 -  . 

0.p-k12 

Figure I. 

a,p-k/2 

Figure 3. 
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The function n(k, in.) (figure 4) represents the polarization operator 

n(k, in,)  = %zbe*nab(k, in,)  (18) 

n,,(k,in,) = v-'((6;16!k))$~. (19) 

The polarization operator n(k, in,) is the irreducible component along a single interac- 
tion line u(k) in the 'k-channel' of the Green function, 

ab  

LT(k, in,)  = V-l((LklL)) jnn. (20) 

?e definitions (!1)-(20) should be understood in the thermodynamical limit: V-tm, 
( N o )  + CO, n. = (NJ/ V = const. 

Figure 4. 

The exact longitudinal dielectric function ~ ' ( k ,  o) of the cs  is connected with the 
retarded Green function 

LR(k w)' v-'((bkl/-k))w (21) 

E ' ( k ,  o) = (1  + u(k)LR(k, U ) ) - ' .  (22) 

d(k,in.)= I-u(k)n(k,in,) .  (23) 
Including equations (16)-(23), we obtain after analytical continuation (Bobrov et 

by the relation (Zubarev 1971, Akhiezer and Peletminsky 1977) 

Therefore 

a /  1989, Bobrov and Trigger 1990) 

or 

Here E,(k, o) = -ik,U(k, w )  is the electric field intensity in the medium and U(k,  o) 
is the scalar potential, 

v'"'( k, o ) 
U(k, o) = 

EYk w )  ' 

Thus, we have derived the exact relation (using diagram methods) between the cs 
linearized distribution function and the electric field intensity (potential) in the medium 
through the function &(p,  k, 0) .  

Induction in the cs electric current is determined by the expression 



6 

Therefore, for the longitudinal cs conductivity d ( k ,  o) connecting the induced current 
with the electric field in the medium, we find 

V B Bobrov and S A Trigger 

or, using the continuity equation in the operator form, 

i o  +,o)=$m 0 ) .  (29) 

The Fourier component of the electric current h of the cs in equation (28) is 

Comparing equations (23) and (29) results in the known expression (Silin and 
Rukhadze 1961) which relates the dielectric function with conductivity: 

4a i  
& I ( k , W ) =  I+-u'(k, 0 0 ) .  (31) 

Let us consider in more detail the form of conductivity and dielectric function of 
the cs in the long-wave limit k+O. There are actually two principle different long-wave 
iiniitst ( i )  o j k - 0 ,  k - 0 ;  {ii) k j w  + G  <%in and Ruitnadze i96i) .  

For the below considerations, let us use the relation 

'0-0 lim ((AI$), = ( ( A ~ L % ) ~ ~ ~ = ~  (32) 

whose validity can easily be seen using the spectral representation for the retarded 
and temperature Green functions (fibrikpsov et al 1962). An exception is the case 
when at least one of the operators A or B is the integral of motion. 

(i) According to equations (1) and (32) 

U - 0  lim ~ ~ ( p , k , o ) = ~ ~ ( p , k , i R . = O ) .  (33) 

Using the diagram expansions one can easily verify that the function $ z ( p ,  k, inn =0) 
has no singularities at small wavevectors k. 

Therefore 

lim $ z ( p ,  k, i n ,  =0) =I zbe((fi;[8fib))inn=o (34) 
k-0 b 

where Sfi. = f in  -(fie). 
Hence, 

Here fbo)( p )  is the exact equilibrium single-particle distribution function of particles 
of type a. Thus, including equations (17) ,  (23) and (29). we find (Klyuchnikov and 
Trigger 1990) 

lim c+'( k, o) = 0 
u i k - 0  
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Equation (36) means that the transition to the limit w / k  + 0 corresponds to consider- 
ing the equilibrium in a static external field (absence of transport processes). The 
variable ( R )  in equation (37) characterizes the distance where a weakening of a test 
charge static field in a cs takes place. 

(ii) To determine the function & ( p ,  k, w )  in the limit k / o + O  let us use the 
continuity equation in the operator form for the function $:( p, k, in.) (CL, # 0). which 
results in 

(38) 

(Bobrov et a /  1989, Bobrov and Trigger 1990). The function ((fiikl,?k))!A; at n. f 0 
has no singularities in the range of small wavevectors k Hence, for isotropic and 
uniform css we have 

4:(p,  k, in.) =* ( f b o ' ( p - k / 2 ) - f b O ' ( p + k / 2 ) )  + - ( ( 6 i k l j ? k ) ) ! A L  hk, 
1% 1% 

lim ((6iklj?k))!~i =((fii~P))~~,~ = ~ ( ( f i i ~ p ~ P ) ) ~ , , ~  (39) 
P k-0 

where 

is the so-called total electric current operator. 

of the cs at the limit k / w  + O  (Bobrov et al 1989, Bobrov and Trigger 1990) 
Thus, after analytical continuation we obtain for the linearized distribution function 

It is easy to see that equations (27) and (40) directly result in the known Kubo formula 
(Kubo 1957) for the frequency dispersion of the conductivity: 

io2 i 
4rrw 3 w v  

u ( w )  =-+-((PIP))- 
where 

is the plasma frequency. 
It is necessary to stress that the proposed derivation of (41) should be considered 

as a consistent derivation of the Kubo formula for the frequency dependence of the 
conductivity u ( w )  = limk-O d ( k ,  w )  which relates the induced current with a weakly 
non-uniform electric field in the medium instead of relating it with an external field 
as in the case of the traditional derivation (Kubo 1957). 

Equations (40) ,  (41) also hold true for systems including neutral particles interacting 
with each other and with charged particles through the short-range potentials, i.e. the 
case of the interaction potentials with their Fourier component remaining of finite 
value at small wavevectors. 

The proposed derivation of (41)  is based on the diagram method of the perturbation 
theory with respect to interparticle interaction. Thus, the validity of the Kubo formula 
(41) is, generally speaking, restricted by the range of divergence of the functional series 
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in the perturbation theory. In this connection, let us mention an alternative approach 
to deriving the formula of the frequency dispersion of conductivity in the framework 
of the TLR without application of the diagram methods; this approach leads to 
principally different results (Bobrov and Trigger 1986, 1988). 

In the case of the one-component cs (OCP), e.g. an electron fluid on a positive 
background, at w # 0 

V B Bobrov and S A Trigger 

since for the OCP 

i-(f)=I*"(o). 

3. Generalized kinetic equation for the linearized distribution function 

We restrict our below consideration to examination of the action of a weakly non- 
uniform electric field on the cs, i.e. we shall assume that the electric field is slowly 
varying within characteristic scales: along the free path length or on the particle path 
length during the field variation period. This means considering the linearized distribu- 
tion function in the limit k l o + O  (equation (40)). The calc$ation of this function is 
reduced to deriving the retarded Gfeen function ( ( N ~ l p J m ) ) w .  For calculating the 
temperature Green function (( N ~ l p J " ) ) i ~ , , z  with application of perturbation theory to 
interparticle interaction, the series expansion is in the general case performed with 
respect to the following dimensionless parameters: 

(i) The thermodynamical parameter of non-ideality 

where C is the average kinetic energy of particles 
(ii) The Born scattering parameter 

where 6 is the characteristic velocity of particles. 

characteristic collision frequency i. to the external field frequency, 
(iii) The dynamical parameter xOb, which is characterized by the ratio of the 

- 
(47) 

Thus, to determine the linearized distribution function and the conductivity of the 
cs at low frequencies w a necessity arises for summation of infinite series of perturbation 
theory with respect to the parameter nob, even in the case of a weakly non-ideal plasmat. 

2 - I / )  
% o h -  Coh/w Val,- Y.bU" . 

t Strictly speaking, there is one more dynamical parameter U,/. which is connected with interparticle 
interaction. However, it is automatically taken into account when expansion with respect to the screened 
potentials of interaction is performed. 
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When calculating the Green function (( 6;lpef"))jnn there is an important possibility 
of effective summation with resqect to the parameter xab if diagram methods are used. 
Actually, the Green function ((~V,"(p,i"))~~~ can be written in the form 

The temperature Green function C,,,(p, p' ,  in.) is the result of the summing up of 
the two-particle Green function D,,(p,p', in., io,) with respect to discrete frequencies 
om = ( 2 m  + l)k,T?r (for fermions) or o, = 2mkBT7r (for bosons) (figure 5 )  

C.dp.p',in,)=k,T 1 D,,~P,P ' ,%~w~) .  (49) 
'"* 

For the function Dah( p, p ' ,  in,, io,) the diagram expansion (figure 6) can b; written 
with extraction of the term r a b ( p ,  p', in,, io,, io,) (figure 7), which is irreducible with 
respect to two exact one-particle Green functions ga(p, io,): 

D J P , P ' , %  i o m )  

= g c ( p .  io,? +inl)gc(p,  k , T E  E gc(p, io,= +ia,?)_p,(p; io,) 
Y, c 

x (  ~ r " ~ ( p , p , , i n " , i o ~ , i o , ) D ~ r ( p , , p ' , i n ~ , i o , ) .  (50) 

The diagram expansion for the function rYh is presented in figure 8. It is easy to see 
that expansion of the function r.,, in a perturbation theory series is connected with 
the parameters anb and yab only. Therefore, equation (50) makes it possible to sum 
up the perturbation theory series with respect to the parameter nab. 
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a,p,iw,+ iR, r,p.iwl +iRo 

Tar ( p. pl, i R,, i w, ,i w1 I 3ZEI 
a,p,iw, c,p,.iwl 

Figure 7. 

a c a a 

a C a a 

a c 

+... + + 
a c a c 

Figure 8. 

The obtained equations permit, in principle, the problem of determining the linear- 
ized distribution function and conductivity of the cs for arbitrary strong interaction 
and arbitrary frequencies w of the external field to be solved. However, to solve 
equation (50) it is necessary to realize the analytical continuation of this equation from 
a discrete set of points to some frequency range. Such a problem is extremely compli- 
cated even in the case of a weak interaction (Maleev 1970). On the other hand, in the 
framework of the KE such a problem does not arise when collision integrals are 
determined. In order to clarify the origin of this statement, let us represent the exact 
equation (40) for the linearized distribution function in the form ofthe integral equation 

The integral equation (51) is the most important result of this paper. It should be 
considered as the K E  in a weakly non-uniform electric field with the exact inclusion 
of interparticle interaction and frequency dispersion. In this case the right-hand side 
of equation (51) represents the sum of the linearized collision integrals. Application 
of the TLR makes it possible to derive the exact equation ( 5 2 )  for the functions 
W.,(p,p’, w )  determining the collision integrals. Using analogy to the K E  method, the 
meaning of the introduction of W., is in the possibility of applying direct perturbation 
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theory with respect to interparticle interaction to calculate these functions. However, 
according to definition (52) ,  the exact calculation of W., is reduced to the calculation 
of c a b  (equation (48)). Thus, strictly speaking, the problem of summing the series with 
respect to parameters is conserved. 

On the other hand, when determining the collision integrals within the limits of 
the KE method, expansion in a perturbation theory series is connected only with the 
parameters ymb and anb (Silin 1971, Klimontovich 1975). This means that when 
expanding the numerator and denominator on the right-hand side of equation (52) in 
a perturbation theory series with respect to a parameter, a compensation of the series 
terms with respect to this parameter occurs. Naturally, a proof in general form of such 
compensation of the series terms with respect to the parameter xOb is equivalent to a 
calculation of the functions Cab( p ,  p ’ ,  U ) .  

Let us consider the consequences of the proposed assumption. Firstly, with respect 
to the above, the function W., can be calculated from the formula 

where the superscript to the function Cab indicates the order of the perturbation theory 
with respect to xOb. Substitution of equation (53) in equation (51) should result in the 
equation being completely equivalent to the result of the KE method. Let us now prove 
this for the example of a weakly non-ideal plasma, assuming the validity of the 
conditions 

Llab<< 1 Y.h<<1. (54) 

4. Linearized kinetic equation for a weakly non-ideal plasma in an electric field of 
arbitraly frequency 

Let us consider a completely ionized electron-ion plasma with a weak interparticle 
interaction (conditions (54)) with arbitrary degeneracy of particles. Due to conditions 
(54) we shall use as the functions g,(p,iw,) the single-particle Green functions 
gbo’(p, i o m )  of free particles: 

g Y ’ ( p ,  io,) = (io, -.z;+pL.)-’. ( 5 5 )  

For completeness the ions will be considered as fermions, so that in equation ( 5 5 )  
o, = (2m + l)kB%. Expansion in a perturbation theory series will be carried out with 
respect to the screened potential of the Coulomb interaction u:b(q, i n )  (double wavy 
line in figure 8) (Klyuchnikov and Trigger 1982). The explicit form of the potential 
u>b(q.in) in the case under consideration can be easily derived using the following 
exact expression (Kraeft et a/ 1986): 

(56) M q ,  i n )  = & b ( q ) + I  u.,(q)n,,(q, i n ) u X q ,  ill). 
cd 

If conditions (54) are satisfied, the polarization operators IIi.(q, CL) and IICj(q, i n )  
cannot be taken into account (Klyuchnikov and Trigger 1976) while the operators 
I Ioa(q, in)  can be considered in the lower approximation with respect to interaction 
(random-phase approximation, RPA): 

n..(q, i n )  -nrIA(q, in) .  (57) 
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As a result, we obtain from equation (56) 

Let us pass to direct calculation of the function Ctd(p, p', i nn ) .  In the case under 
consideration (conditions (54)) it is sufficient to take into account the diagrams in 
figure 9 (Perel and Eliashberg 1962). With respect to the laws of the diagram technique 
(Abrikosov et al 1962). we obtain 

Cbb'(p,p', in , )  = Ab'd(p,p', inn)+Ab2,'(p,p', iW+Ab'd(p,p', in , )  

A%'(P,P', in.) 

(60) 

x (gbo'(p, iom+inn)gbo)(p, io, +ia,)gV'(p, iw,) 

xgbo'(p+q, io, + i n ,  +im,)+gb"(p, io, +in,)  



xgbo’(p, io, +in.)gb”(p, io,)gbo’(p+q, io, +inl+in.) 

x g p ( p ’ ,  iwk+i&jgf!(p’, iox) 

x ( gio’( p’ - q, io, -ial) + &’(p’+ q, iw, +in, +in.)) 

(62) 

Here and below f : ’ ( p )  is the Fermi-Dirac distribution function for particles of 

As seen from equations (61)-(63), it is necessary to define the analytical continuation 

k , ~  q(ia )+(in! + i a )  (66) 

with respect to the variable inH from discrete points on the imaginary axis (C l ,  > 0) 
to the real axis. As is shown by Perel and Eliashberg (1962) 

type a. 

of the function 

=, 

k s T C  q( ia ! )+( ia ,+ i~ , )  
Y ,  =Im dacoth(a)(+R(n+in,,) 2kRT Im q‘(n)+q*(n-iR.) Im ILR(n)). 

-m 271 
(67) 
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The analytical continuation is now reduced to substituting in.  by fi(o+i8),  8=+0; 
P “ ~ ’  is the retarded (advanced) Green function. For real values of n 

(PpR(n))*=PA(n) .  (68) 

V B Bobrou and S A Trigger 

Therefore, the linearized KE for a weakly non-ideal plasma takes the form 

E , ( k + O , w )  -iwf:’(p, k +  0, w ) + -  - 2.e af b0’(p) 
fi apm 

For comparison of the results of the KE and TLR for a weakly non-ideal plasma, 

At the static limit w + O  the right-hand side of equation (69) takes the form 
let us consider the limiting cases: o + 0 and w >> Cab. 
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with equations (70) and (71) taken into account this is completely equivalent to the 
linearized Lenard-Balesku collision integrals (Silin 1971, Klimontovich 1975). 

In the high-frequency case w >> Fah the right-hand side of equation (69) can be 
considered as small and the functions included in it can be substituted by the following 
expression: 

-coth(*) dw, 
_m 2rr 2k,T 
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,In equations (79) and (80) the function ~ ~ ( 9 ,  o) is determined by formula (59); a # b. 
Equations (75)-(80) for high-frequency conductivity are completely equivalent to 

the results of Perel' and Eliashberg (1962) for gaseous plasma and Bobrov and Trigger 
(1984) for metallic plasma in the framework of the TLR and, with respective approxima- 
tions, to the results (Silin 1961, Klimontovich 1975) obtained by the KE method. 

Thus, assumption (53) on the form of the function Wab( p, p', o) leads to the known 
results of the KE method in the frequency ranges o + 0 and o >> Gob. Therefore, equation 
(69) can be considered as the quantum linearized equation for a weakly non-ideal 
completely ionized plasma in an electric field of arbitrary frequency o. 

However, the question of the validity of assumption (53) still remains open even 
in the case of a weakly non-ideal plasma. Since a consistent calculation of the function 
Cab in the framework of the diagram technique has not yet been carried out, let us try 
to examine the consequences of assumption (53). 

5. On the condition of applicability of the KE for a weakly non-ideal plasma 

Let us introduce into consideration the Funciion 

Using diagram expansions, one can easily verify (see, for example, equations (60)-(65)) 
that 

(82) c.b(P,P', in.) = cb,(P',P, in") .  
Therefore, 

With equation (83) taken into account, one can write the exact expression (IO) for the 
linearized distribution function in the form (Bobrov er al1989, Bobrov and Trigger 1990) 

E , ( k + O ,  o) = -v.(p, o)fy ' (p ,  k + 0 ,  w ) .  (84) -ioft ' (p,  k+0, o)+- - 2.e afboJ(p) 
ii apm 
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According to equation (84), the function u.(p, w )  represents the effective collision 
frequency for particles of type a,  and is dependent both on the particle momentum 
and the external field frequency. As is clear from general considerations, at finite values 
of w the function v,,(p, w )  is complex, so that the time between collisions is precisely 
characterized by the function Re ua(p,  w ) .  

Since equations (54) and (84) are exact and, therefore, equivalent, the equivalence 
of these equations should not be violated in the correct calculation of the function 
W.,(p, p', w ) .  This criterion can be considered as the necessary condition for correct 
calculation of the function Wab(p, p', w ) .  

Thus, the linearized KE (equation (69)) for a weakly non-ideal plasma holds true 
if its solution has the form 

f :l1(p, k - 0 ,  w )  = - y w  E , ( k t  0, w)(-iw + v,,(p, w) ) - '  ( 8 5 )  
f i  ape 

where v.(p,  w ) ,  according to equations (40), (60)-(68) and ( X l ) ,  has the form (Bobrov 
et al 1989) 

x I m Q , R ( p , p + q , w , )  I m G ( q , w d .  (87) 

$ 5 )  :akes p!r;ce o-!y if OXP c%?siders B system nf e!ectmr?s 1. the medillm afimmnvab!e 
Thus, in the static case coincidence of the KE results (equation (69)) with equation 

scatterers (ions) without taking account of the electron-electron collision integral in 
the KE. Therefore, the results obtained on  the basis of the K E  method can be considered 
as reliable when considering such systems as liquid metal, weakly ionized plasma, etc. 
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In the general case, as is clear from the results obtained, the construction of a 
consistent non-contradictory perturbation theory for the examination ofthe distribution 
function in a weak electric field requires the diagram equations (48)-(50) to be solved. 
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